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We consider binary liquid mixtures near their critical consolute points and exposed to geometrically flat but
chemically structured substrates. The chemical contrast between the various substrate structures amounts to
opposite local preferences for the two species of the binary liquid mixtures. Order parameter profiles are
calculated for a chemical step, for a single chemical stripe, and for a periodic stripe pattern. The order
parameter distributions exhibit frustration across the chemical steps which heals upon approaching the bulk.
The corresponding spatial variation of the order parameter and its dependence on temperature are governed by
universal scaling functions which we calculate within mean field theory. These scaling functions also determine
the universal behavior of the excess adsorption relative to suitably chosen reference systems.
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I. INTRODUCTION

Chemically structured substrates have gained significant
importance within the last few years. Since it is possible to
produce networks of chemical lanes at the micrometer scale
and even below, these chemically structured substrates have
applications in microreactors, for the “laboratory on a chip,”
and in chemical sensorsf1,2g. They can operate with small
amounts of reactants, which is important when investigating
expensive substances and substances that are available only
in small amounts, like biological material, or when dealing
with toxic or explosive materials. At these small scales the
interaction of the fluids with the substrate becomes important
and there is the challenge of controlling the distribution and
the flow of the fluids on these structures.

In the following we investigate three different types of
chemically structured substrates, as shown in Fig. 1. First we
analyze fluid structures at a chemical stepfsee Fig. 1sadg
which is important for understanding the local properties of
fluids at the border of stripes. Next we consider a single
chemical stripefsee Fig. 1sbdg as the simplest chemical sur-
face pattern, and finally we study a periodic stripe pattern
fsee Fig. 1scdg as the paradigmatic case for the investigation
of adsorption at heterogeneous surfaces.

The chemical contrast on the substrates acts on the adja-
cent liquidf3,4g. In order to impress the chemical pattern of
the substrate on a one-component liquid, the chemical struc-
ture has to be chosen as a pattern of lyophobic and lyophilic
regions. For binary liquid mixtures one chooses a pattern of
two different substrate types, such that one component is
preferred by one substrate type and the second component by
the other substrate type. This lateral structuring of the sub-
strate causes a rich fluid-substrate interface structure which
typically depends on the molecular details of the local force
fields. However, in this study we focus on the particular case
of the fluid being close to a second-order phase transition.
This is either the liquid-vapor critical point of a one-
component liquid or the critical demixing transition of a bi-
nary liquid mixture. In these cases the ensuing critical phe-
nomena are to a large extent universal in character, i.e., they

render molecular details irrelevant in favor of universal scal-
ing functions by involving spatial variations on the scale of
the diverging correlation length. Near the critical point the
surface patterning acts like a laterally varying surface field of
alternating sign. This generates an order parameter profile
characterizing critical adsorption of opposite sign such that
the system is frustrated across the chemical steps. Upon ap-
proaching the bulk of the fluid this frustration is healed and
the healing is expected to be governed by universal scaling
functions. In addition, the substrate patterning results in a
change of the excess amount of adsorbed fluid with respect
to the case of critical adsorption on a homogeneous sub-
strate. The excess adsorption is expected to be governed by
universal scaling functions, too.

It is the purpose of this contribution to describe this scal-
ing in terms of general renormalization group arguments and
to calculate the corresponding universal scaling functions to
lowest order, i.e., within mean field theory. If, as is actually
the case, the size of the lateral structures is comparable with
the range of the correlation length, which can reach up to
100 nm close to the critical point, one can expect a rich
interplay between the externally imprinted patterns and the
critical phenomena characterized by the correlation length.

A. Critical phenomena

In order to describe critical phenomenaf5,6g one distin-
guishes properties to classify them. Starting with unconfined
systems one introduces the so-called bulk universality
classes which are characterized by critical exponents and am-
plitudes that describe the dependence of various quantities,
e.g., the order parameter and the correlation length, on the
reduced temperaturet=sT−Tcd /Tc upon approaching the
critical temperatureTc. These critical exponents are univer-
sal, i.e., the same for all members of a universality class. The
amplitudes usually are nonuniversal, whereas the number of
independent nonuniversal amplitudes is limited; any nonuni-
versal amplitude can be expressed in terms of these indepen-
dent nonuniversal amplitudes and universal amplitude ratios.
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One-component fluids near their liquid-vapor critical point
and binary liquids near their demixing critical point belong
to the Ising universality class, for instance uniaxial ferromag-
nets. These systems have two independent nonuniversal am-
plitudes. In this sense our subsequent analysis holds for all
systems encompassed by the Ising universality class.

The order parameterf indicates the degree of order in the
system and has to vanish above the critical temperature in
the absence of an ordering field while below the critical tem-
perature it takes a finite value. It is described by the universal
critical exponent b and a nonuniversal amplitudea:
fstd=autub. For a one-component fluidf is the difference
between the density and its value at the critical point. In the
case of a binary liquid mixture it is chosen as the difference
between the concentration of one fluid component and its
concentration at the critical demixing point.

The correlation length is defined by the exponential decay
of the bulk two-point correlation functionGsrd for large dis-
tancessr →`d at temperatures off criticalitysTÞTcd and it is
denoted asj+ above and asj− below the critical temperature.
It diverges according to the power lawj±=j0

±utu−n with the
universal critical exponentn and the nonuniversal amplitudes
j0

±. Their ratio j0
+/j0

− is, however, universal. If the critical
medium is brought near a substrate, surface universality
classes come into play, which we shall discuss in Sec. II.

B. Experimental methods

Different techniques to produce chemical structures in the
range of micro- and nanometers have been establishedf7g. In
order to obtain topologically flat but chemically structured
substrates one can take advantage of the self-ordering
mechanism of self-assembled monolayerssSAMsd in using
block copolymers or mixtures of polymers which form struc-
tures while demixingf3,8,9g. The morphology and domain
size of these structures depend on different characteristics of
the materials and of the formation process. Another possibil-
ity to produce structured substrates is to change the function-
ality of the SAMs partially by irradiating a homogeneous
SAM that is covered with a mask that carries the desired
structuref10g. A third method is the so-called microcontact
printing f11g where samples, e.g., produced with lithography,
are used as a mold for an elastomer stamp. The structure of
the original is copied by stamping a “thiol ink” on gold

covered substrates which chemisorbs there and forms a
SAM. The empty spaces between the patterns of the stamped
structure can be filled with a second thiol with a different
functional end group such that a topologically flat but chemi-
cally structured substrate is built up. As a last method we
mention the exposure of oxidated titanium surfaces to uv
light f12–14g.

In order to investigate the structural properties of fluid
systems near surfaces, various experimental methods have
been developed: Ellipsometry and especially phase modu-
lated ellipsometry were established in Refs.f15,16g more
than 20 years ago and are still powerful toolsf17,18g. An
incident light beam is reflected by the surface of interest and
the ratio of the complex reflection amplitudes for polariza-
tions parallel and perpendicular to the plane of incidence
s“coefficient of ellipsometry” or “ellipticity”d is measured.
The order parameter is modeled and related to the ellipticity
via the spatially varying dielectric constant and can then be
compared with the measured value. In neutron or x-ray re-
flectometry one measures the reflectivity as a function of the
momentum transfer normal to the surface of the sample. This
reflectivity spectrum is related to the refractive index profile,
which itself is associated with the profile of the order param-
eterf18–22g. A more direct measurement of the adsorption of
a component to a substrate can be carried out with a differ-
ential refractometerf23,24g. Here a laser beam passes a mea-
surement cell consisting of two compartments filled with the
fluid of interest and a reference liquid, respectively. The in-
tensity of the deflected beam is proportional to their differ-
ence in refractive index. By comparing this measured inten-
sity with the one of a beam deflected by a measurement cell
filled with a liquid with known interfacial properties and the
reference liquid, one is able to infer the properties of the fluid
of interest.

With these methods critical adsorption on homogeneous
substrates has been experimentally investigatedssee Refs.
f25,26g and references thereind. On chemically structured
substrates mostly wetting experiments have been performed
f27–29g. The present paper extends theoretical work on criti-
cal adsorption on chemically homogeneousf30–33g and to-
pologically f34g structured surfaces and work on wetting
phenomena at chemically structured substratesf35–39g to the
case of critical adsorption on geometrically flat, but chemi-
cally structured surfaces.

FIG. 1. The different chemical substrate structures studied in this article:sad chemical stepsCSd, sbd single stripesSSd, scd periodic stripes
sPSd. All systems are translationally invariant in they direction. The shading indicates different local preferences for, e.g., the two compo-
nents of a binary liquid mixture exposed to the geometrically flat surface of macroscopically large lateral extensionB.
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The remainder of this paper is organized as follows. In
Sec. II we introduce our model and in order to set the stage
we recall previous results on critical adsorption at homoge-
neous substrates. In Sec. III we present our results for the
critical adsorption at chemically structured substrates. We
summarize our findings in Sec. IV.

II. CRITICAL ADSORPTION AT HOMOGENEOUS
SUBSTRATES

Boundaries, which come into play when investigating
confined systems, induce deviations from the bulk behavior.
Near a critical point the Ising bulk universality class splits
into three possible surface universality classessdenoted as
normal, special, and ordinary surface universality classes, re-
spectivelyd characterized by surface critical exponents and
amplitudesf30,31g. The boundary conditions applied to the
system determine the surface universality class, to which the
system belongs. The behavior of the bulk is not affected by
the boundaries.

It has turned out that in the sense of renormalization
group theory it is sufficient to describe the presence of the
substrate by a surface fieldh1 and the so-called surface en-
hancementc f31g. fThese names originate from the corre-
sponding description of surface magnetic phenomena
f30,31g; see also Eq.s7d.g The surface enhancement is related
to the couplings between the ordering degrees of freedom at
the surface.

The so-called ordinary surface universality class is char-
acterized by a vanishing surface field and a positive surface
enhancementsh1=0,c.0d which suppresses the order pa-
rameter at the surface below its bulk value. For magnetic
systems this effect of missing bonds is the generic case.

The special surface universality class, describing a multi-
critical point, requires in addition to a vanishing surface field
a surface enhancement which within mean field theory van-
ishessh1=0,c=0d and causes a flat order parameter profile in
the vicinity of the substrate; fluctuations induce a divergence
of the order parameter profile at the surface.

The normal surface universality class is characterized by a
nonvanishing surface field and the absence of the surface
enhancementsuh1u.0, c=0d, which leads to an order param-
eter value at the surface larger than in the bulk, even above
the critical temperature where the bulk value of the order
parameter is 0. For fluid systems the normal surface univer-
sality class is the generic case. In contrast, in the context of
magnetism an order parameter which is larger at the surface
than its value in the bulk can be obtained in the absence
of surface fields but for a negative surface enhancement
sh1=0,c,0d. Since this is rather uncommon for magnetic
systems, the normal surface universality class is also referred
to as the so-called extraordinary surface universality class.
The fact that the normal and the extraordinary cases are
equivalent and identical at their fixed points,suh1u→` ,
c=0d for fluid systems andsh1=0,c→−`d for magnetic sys-
tems, and thus identical with respect to their asymptotic be-
havior, was predicted by Bray and Mooref40g and later
proven by Burkhardt and Diehlf41g. In the following we

shall focus on the normal and extraordinary surface univer-
sality classes, respectively.

A homogeneous substrate confining a binary liquid mix-
ture inevitably has a preference for one of the two compo-
nents. This preference becomes pronounced at the critical
point and leads to an enrichment of the preferred component
at the substrate. At the critical temperature the local order
parameter profile decays algebraically toward its bulk value.
This phenomenon has been called critical adsorptionf32g.

In the case of planar homogeneous substrates in addition
to the correlation lengthj± the distancez from the substrate
is the other relevant length scale. If this length is scaled with
the bulk correlation lengthj±, the order parameter profile
fsz,td takes the following scaling form at the fixed points
suh1u→` ,c=0d and sh1=0,c→−`d, respectively:

fsz,td = autubP±Sw =
z

j±D for t _ 0, s1d

with the scaling variablew=z/j±, which describes the dis-
tance from the substrate in units of the correlation lengthj±.

The scaling functionsP±swd are universal after fixing the
nonuniversal amplitudea and the nonuniversal amplitudej0

+

of the correlation lengthj. sRecall that the ratioj0
+/j0

− is
universal and therefore the amplitudej0

− is fixed along with
the amplitudej0

+.d The amplitudea is chosen in such a way
that the scaling functionP−swd below the critical temperature
tends to 1 for large distances from the substrate, i.e., the
amplitudea corresponds to the amplitude of the bulk order
parameterfsz→` ,t,0d=autub. With this choice one finds
the following behavior of the scaling functions:

P±sw → 0d , w−b/n, s2d

P+sw → `d , e−w, s3d

P−sw → `d − 1 , e−w. s4d

Away from the renormalization group fixed point the sur-
face fieldh1 and the surface enhancementc have finite val-
ues. They appear as additional parameters in the scaling
functions with powers of the reduced temperature as prefac-
tor due to scaling with the correlation length:

fsz,td = autubP±
„utunsj0

±d−1z,utu−D1sj0
±dd/2h1,utu−Fj0

±c…, s5d

where D1 and F are surface critical exponentsf31g and d
denotes the spatial dimension of the system.

The explicit calculation of the order parameter profiles
fsz,td starts from the following fixed point Hamiltonian
Hffg=Hbffg+Hsffg, which separates into the bulk part
Hbffg in the volumeV and the surface partHsffg on the
surfaceS f30,31g:

Hbffg =E
V

dd−1r idzS1

2
s=fd2 +

1

2
tf2 +

u

4!
f4D , s6d
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Hsffg =E
S

dd−1r iS1

2
cf2 − h1fD . s7d

Here t is proportional to the reduced temperaturet , u.0
stabilizes the HamiltonianHffg for temperatures below the
critical pointsT,Tcd, ands=fd2 penalizes spatial variations;
r i is a vector parallel to the substrate. The order parameterf
is fluctuating around a mean valuekfl. Each configurationf
contributes to the partition functionZ with the statistical
Boltzmann weighte−Hffg:

Z =E Dfse−sHbffg+Hsffgdd, s8d

kfl =
1

Z
E Dfsfe−sHbffg+Hsffgdd. s9d

In the present work we shall provide general scaling prop-
erties with the quantitative results for the scaling functions
determined within mean field approximation, i.e., only the
order parameter profilemszd with the maximum statistical
weight will be considered and all others will be neglected:

U dHffg
df

U
f=m

= 0. s10d

This mean field approximation is valid above the upper criti-
cal dimensiondc=4. Within this approximation the afore-
mentioned critical exponents take the following values:

bsd ù 4d =
1

2
and nsd ù 4d =

1

2
, s11d

whereas the critical exponents at physical dimensiond=3
are f42g

bsd = 3d = 0.3265 and nsd = 3d = 0.6305. s12d

The mean field approximation is important because it is the
zeroth-order approximation in a systematic Feynman graph
expansion on which these=d−4d expansion and hence the
renormalization group approach are basedf6,31,43g. The
higher orders in the Feynman graph expansion require inte-
grations over the mean field order parameter profile and the
two-point correlation functionfcompare Eq.s3.209d in Ref.
f31gg which can be carried out reasonably if they are avail-
able in an analytical form. However, the mean field approxi-
mation is expected to yield the qualitatively correct behavior
of the scaling functions if for the variables forming the scal-
ing variables the correct critical exponents are used, which
are known with high accuracyf42g fsee Eq.s12dg.

Taking the functional derivative of the Hamiltonian with
respect to the order parameterfsee Eqs.s6d, s7d, and s10dg
yields a differential equation for the mean field profilemszd
of the order parameterf30,31g,

−
]2

]z2m+ tm+
u

3!
m3 = 0, s13d

with boundary conditions

U ]m

]z
U

z=0
= cmsz= 0d − h1 s14d

and

U ]m

]z
U

z→`

= 0. s15d

A. Infinite surface fields

For systems that belong to the extraordinary surface uni-
versality classsh1=0,c,0d the boundary condition at the
surfaces14d simplifies and the differential equations13d has
an analytical solutionf31g. Together with the scaling behav-
ior of the order parameters1d and the nonuniversal amplitude
a which within the present model and within mean field
sMFd approximation equalsa=s6/ud1/2sj0

+d−1 this leads to
scaling functionsPMF

± swd of the following form:

PMF
+ swd =

Î2

sinhsw + w0d
, cothsw0d = uc̃u, s16d

PMF
− swd = cothSw + w0

2
D, sinhsw0d =

1

uc̃u
, s17d

where c̃=j0
+utu−1/2c is the scaled and dimensionless surface

enhancement. The parameterw0 vanishes at the extraordi-

nary fixed point sh̃1=0,c̃→−`d—with the scaled and di-

mensionless surface fieldh̃1=su/6d1/2j0
+2

utu−1h1—so that Eqs.
s16d and s17d reduce to the scaling functions

P`
+swd =

Î2

sinhswd
s18d

and

P`
−swd = cothSw

2
D , s19d

which in the following are referred to as “half-space profiles”
above and below the critical temperature, respectively. As
already mentioned at the beginning of Sec. II the extraordi-
nary fixed point is equivalent to the normal fixed point

suh̃1u→` , c̃=0d and thus Eqs.s18d and s19d represent the
latter fixed point as well.

B. Finite surface fields

Since in experimental systems the surface fields are finite,
we also discuss the case of a homogeneous substrate with a
surface field 0,h1,`. This provides the starting point for
discussing the case of a chemical step with finite—albeit
strong—surface fields that we shall consider in Sec. III A 2.
Off criticality si.e., tÞ0d and for a finite surface fieldh1 the

scaled surface fieldh̃1=su/6d1/2j0
+2

utu−1h1 is also finite. At the
substrate, for finite surface fields the order parameter profiles
Ph1

± swd above and below the critical temperature have finite
values Ph1

+ sw=0d=Psub
+ and Ph1

− sw=0d=Psub
− , respectively.
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These values are determined by the following equations,
which are obtained by performing the first integral of the
differential equations forPMF

+ and PMF
− , corresponding to

Eq. s13d f30g:

Psub
+4

+ 2s1 − c̃2dPsub
+2

+ 4c̃h̃1Psub
+ − 2h̃1

2 = 0 s20d

and

Psub
−4

− 2s1 + 2c̃2dPsub
−2

+ 4c̃h̃1Psub
− − 2h̃1

2 + 1 = 0. s21d

For the normal surface universality classsi.e., c̃=0d Eqs.s20d
and s21d simplify and we find for the order parameterPsub

+

and Psub
− at the substrate above and below the critical tem-

perature, respectively,

Psub
+ = ± ÎÎ1 + 2h̃1

2 − 1, h̃1 _ 0, s22d

and

Psub
− = ± ÎÎ2h̃1

2 + 1, h̃1 _ 0. s23d

Using these equations together with the boundary con-
dition s14d and the differential equations13d the half-space

profile for finite surface fieldsPh1

± swd=P±sw,h̃1,` , c̃=0d
can be calculated numericallyssee the Appendixd. In Fig. 2
the half-space profiles for infinite and finite surface fields are
shown for temperatures above as well as below the critical
temperature. In the following section we shall consider inho-

mogeneous substrates, i.e., substrates with a laterally varying
surface fieldh1 for which further length scales come into
play, which also scale with the correlation lengthj±.

III. CRITICAL ADSORPTION AT INHOMOGENEOUS
SUBSTRATES

A. Chemical step

First we consider an infinite substrate which is divided
into two halves with opposing surface fieldsh1 so that there
is a chemical step at the straight contact linesx=z=0d of the
two halvesfsee Fig. 1sadg. We introduce the scaled coordi-
natesv=x/j and w=z/j describing the distancex from the
contact line andz from the substrate, respectively, in units of
the correlation lengthj. The system is translationally invari-
ant in the direction perpendicular to thex-z plane.

For laterally inhomogeneous systems one has to recon-
sider whether the surface HamiltonianHs fEq. s7dg should
contain terms likef]if andf]'f. However, the termf]if
would favor order parameter profiles which are nonsymmet-
ric with respect tosx=0,yd even without surface fields.
Therefore such a term is ruled out. The termf]'f leads
only to a redefinition of the surface enhancementf31g and
therefore can be neglected for homogeneous as well as for
the inhomogeneous substrates. Thus the surface Hamiltonian
Hs for inhomogeneous surface fields has the same form as
the one for homogeneous surface fieldsfEq. s7dg.

1. Infinite surface fields

First we analyze the case of a homogeneous infinite sur-
face field on both halves of the substrate but with opposite
sign and a vanishing surface enhancement, i.e., we consider a
steplike lateral variation of the surface fieldh1: h1= ±` for
x_0. The actual smooth variation ofh1 on a microscopic
scale turns effectively into a steplike variation if considered
on the scalej±.

a. Order parameter profiles. The order parameter profile
for a system with a chemical stepsCSd exhibits the following
scaling property:

fsx,z,td = autubPCS
± Sv =

x

j± ,w =
z

j±D for t _ 0, s24d

which generalizes Eq.s1d. This scaling function shows the
following limiting behavior. For large distances from the
chemical stepsuvu→`d the profile approaches the corre-
sponding order parameter profile of a system with a homo-
geneous substrate, whose asymptotic behavior is given by
Eqs. s2d–s4d, PCS

± suvu→` ,wd=P`
±swd. For large distances

from the substratesw→`d and above the critical tempera-
ture the order parameter profile vanishes for all values ofv,
i.e., PCS

+ sv ,w→`d=0 while below the critical temperature
the order parameter profile tends to the profilePLV

− svd of a
free liquid-vapor interfacePCS

− sv ,w→`d=PLV
− svd f44g. The

mean field approximation to this profile is given by

Plv
− svd = tanhSv

2
D . s25d

FIG. 2. sad The half-space profileP`
+sw=z/j+d for an infinite

surface fieldh̃1 and Ph1

+ sw=z/j+d for a finite scaled surface field

h̃1=100 above the critical temperature.sbd The same belowTc with
w=z/j−.
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Figure 3 provides a three-dimensional plot of the numeri-
cally determinedssee the Appendixd order parameter profile
for T.Tc. In Fig. 4 we show cuts through the order param-
eter profile parallel to the substrate as it changes with in-
creasing distance from the substrate. In order to provide a
clearer comparison the cross sections are normalized to 1 at
the lateral boundaries via dividing by the exponentially de-
caying half-space profileP`

±swd. From the fact that the cross
sections do not fall onto one curve follows that the scaling

function PCS
± sv ,wd does not separate into av-dependent

and a w-dependent part. It shows that the slope
s±swd=f]Pcs

± sv ,wd /]vguv=0 of the scaling function at the step
decreases with increasing distance from the substrate which
visualizes the healing of the frustration upon approaching the
bulk. Note that the slopes in Fig. 4 must be multiplied by
P`

±swd in order to obtains±swd. From Eq.s24d it follows that

U ]fsx,z,td
]x

U
x=0

= a
utub

j
U ]PCS

± sv,wd
]v

U
v=0

=
a

j0
± utub+ns±swd.

s26d

Since there is a nonvanishing order parameter profile even at
the critical point ffsx,z,t=0dÞ0g the overall temperature
dependence of the slope]f /]x in Eq. s26d has to vanish.
Therefore one finds forw=sz/j0

±dtn→0:

s±sw → 0d = A1
±w−b/n−1. s27d

For T.Tc the slopes+swd vanishes exponentially upon ap-
proaching the bulk:

s+sw → `d = A2
+e−w. s28d

Below Tc the slope s−sw→`d approaches the slope
sLV =f]PLV

− svd /]vguv=0 of the scaling function for the liquid-
vapor profilefEq. s25dg at most,e−w or slower:

s−sw → `d − sLV = A2
−e−Cw, 0 , C ø 1. s29d

As the half-space profilesPCS
+ sv→ ±` ,wd= ±P`

+swd fEq.
s3dg andPCS

− sv→ ±` ,wd= ±P`
−swd fEq. s4dg decay exponen-

tially ,e−w for large distances from the substrate, the slope
s±swd cannot decay faster because this would require that the
slopes±swd be smaller than the slopes]PCS

+ /]vduv0
for a cer-

tain v0Þ0. On the other hand a decay of the slopes+swd
slower thane−w would lead to an unphysical increasing slope
of the normalized cross sections atv=0 with increasing dis-
tance from the substrate. However, for the slopes−swd a
decay towardsLV slower than,e−w cannot be ruled out.

Within mean field theory Eqs.s25d and s27d yield
s±sw→0d,w−2 fsee also Eq.s11dg and s−sw→`d=sLV = 1

2,
respectively, which is in agreement with the numerical re-
sults shown in Fig. 5. These results for the slopes±swd of the
scaled order parameter profilePCS

± sv ,wd transform into the
following findings for the slope of the unscaled order param-
eter profilefsx,zd:

U ]f

]x
U

x=0
, z−b/n−1, T = Tc, s30d

U ]f

]x
U

x=0
, tb+ne−z/j+

, T . Tc, z@ j+,

, sj+d−b/n−1e−z/j+
, s31d

and

U ]f

]x
U

x=0
−

]flv

]x
, utub+ne−Cz/j−

, T , Tc, z@ j+,

, uju−b/n−1e−Cz/j−
. s32d

FIG. 3. Scaling functionPCS
+ sv=x/j+,w=z/j+d for the order

parameter profile of a system above the critical temperature and
confined by a substrate with a chemical step located atx=z=0. Due
to symmetryPCS

+ sv=0,wd=0.

FIG. 4. Cuts through the order parameter profilesPCS
+ sv ,wd, as

shown in Fig. 3, andPCS
− sv ,wd for w=z/j=const with the normal-

ization PCS
± sv ,wd /P`

± swd sad above andsbd below the critical tem-
perature. Upon increasing the distance from the substrate the slope
of the curves atv=0 decreases. The solid lines represent the limit-
ing curves for w→`. sad Above the critical temperature the
limiting slope at v=0 of the normalized curves is given by
s+sw→`d /P`

+sw→`d=A2
+/ s2Î2d.0.200 with the slope

s+swd=f]PCS
+ sv ,wd /]vguv=0 of the unnormalized scaling function

and its amplitudeA2
+.0.566fsee, Eq.s28d and Fig. 5g. sbd Below

Tc the limiting curve corresponds to tanhsv /2d.
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As an example we investigate more closely the healing
effect above the critical temperature. To this end we rescale
the normalized cross sections of Fig. 4 such that their slope
at v=0 becomes 1; see Fig. 6. It shows that these rescaled
normalized cross sections for different distances from the
substrate differ basically only in the region where the curva-
ture of these curves is largest. From the fact that these cross
sections do not fall onto one curve it follows that the scaling
function P±sv ,wd is not simply given by the knowledge of

one cross section, the slopesswd, and the half-space profile
P`

+swd, but requires the full numerical analysis. Nonetheless
Fig. 6 demonstrates that to a large extent the rescaling used
there reduces the full scaling functionPCS

+ sv ,wd to a single
function of v only.

b. Excess adsorption. It is a challenge to determine ex-
perimentally the full order parameter profilefsx,zd. There-
fore in the following we analyze the adsorption
G=edV fsr d at the substrate which as an integral quantity is
more easily accessible to experiments. To this end for any
system with an order parameter profilefsx,zd and a corre-
sponding scaling functionP±sv ,wd we introduce a suitable
reference system with an order parameter profilefrefsx,zd
and the corresponding scaling functionPrefsv ,wd. This al-
lows us to introduce an excess adsorptionGex with respect to
this reference system,

Gex = HE E dx dzffsx,zd − frefsx,zdg = autubj±2
HG̃ex

±

s33d

with its universal partG̃ex
± defined asfsee Eqs.s1d and s24dg

G̃ex
± =E E dv dwfP±sv,wd − Pref

± sv,wdg. s34d

H denotes the extension of the system perpendicular to the
x-z plane. fIn the three-dimensional caseH corresponds to
the one-dimensional extension of the system in they direc-
tion. Within mean field theory, which is valid for dimensions
dù4, H corresponds to thesd−2d-dimensional extension of
the system in they1,… ,yd−2 directions.g Equations33d leads
to the following temperature dependence of the excess
adsorption:

Gex = G̃ex
± aj0

±2
Hutub−2n, s35d

with the universal amplitudeG̃ex
± and three nonuniversal am-

plitudesa, j0
±, andH. Within mean field approximation this

yields Gex=G̃ex
± aj0

±2
Hutu−1/2. For our choices of reference sys-

tems as given belowPref
± sv ,wd leads even within mean field

theory to a cancellation of the divergence of the correspond-
ing integrals over the scaling functionP±sv ,wd caused by
small distances from the substrate. This way the numerical
mean field data ford=4 allow one to make meaningful ap-
proximate contact with potential experimental data ford=3.

Specifically, for the chemical step we introduce a refer-
ence systemPCS,0

± sv ,wd which can be interpreted as a system
with a chemical step for which no healing at the chemical
step occurs:

PCS,0
± sv,wd = H− P`

±swd, v , 0,

+ P`
±swd, v . 0.

J s36d

Since this choice of the reference systems leads to a vanish-
ing excess adsorption for any antisymmetricswith respect to
v=0d scaling functionPCS

± sv ,wd upon integration over the
whole half spacew.0, we restrict the integration to a quar-
ter of the spacessee Fig. 7d:

FIG. 5. Slopess±swd at the chemical step of the scaling func-
tions PCS

± sv=x/j± ,w=z/j±d for the order parameter profile of a
system with a chemical step atx=0. sad For small distances from
the substrate the slopes diverge asA1

±w−2 with amplitudes
A1

+=2.367±0.006 andA1
−=3.366±0.005fsee Eq.s27dg. sbd For

large distances the slopes decay exponentially, aboveTc,
s+sw→`d=A2

+e−w with A2
+=0.566±0.001fsee Eq. s28dg; below

Tc, s−sw→`d approaches its limiting valuesLV =1/2 moreslowly,
i.e., asA2

−e−Cw with A2
−=2.338±0.001 andC=0.858±0.001fsee Eq.

s29dg.

FIG. 6. Rescaled normalized cross sections with slope 1 at
v=0 for w=0.1, 1.5, 2.9, 4.3, 8.6.
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G̃ex,CS
± =E

0

`

dvE
0

`

dwfPCS
± sv,wd − PCS,0

± sv,wdg. s37d

For a binary liquid mixture confined by a substrate with a
chemical stepGex,CS

± can be interpreted as the amount of
particles of one type removed across the chemical step from
the substrate that prefers them.

Below Tc the scaling functionPLV
− svd=PCS

− sv ,w=`d
fEq. s25dg of the liquid-vapor profile gives rise to a nonvan-

ishing universal excess adsorptionG̃b with respect to the cho-
sen reference systemPCS,0

− :

G̃b =E
0

`

dvfPLV
− svd − PCS,0

− sv,w = `dg =E
0

`

dvfPLV
− svd − 1g

= − 2 ln 2. s38d

Thus G̃ex,CS
− can be written as

G̃ex,CS
− = L̃G̃b + G̃ex,f

− s39d

whereL̃=L /j−→` denotes the extension of the system per-
pendicular to the substrate and the system-size-independent

contributionG̃ex,f
− characterizes the influence of the chemical

step. From our numerical analysis we find the following uni-
versal excess adsorption amplitudes:

G̃ex,CS
+ = − 1.457 ± 0.001, s40d

G̃ex,f
− = 1.299 ± 0.001. s41d

2. Nonantisymmetric finite surface fields

Next we study an infinite substrate consisting of two
halves with surface fields of opposite sign but different ab-
solute finite valueshp and hn, respectively, and a vanishing
surface enhancement. As before we consider a steplike varia-
tion of the surface fieldh1:

h1sxd = Hhn, x , 0,

hp, x . 0.
J s42d

The absence of antisymmetry for these systems is reflected
by the “zero line” v0swd, where the order parameter van-

ishes:Psv0,wd=0. For ratios −h̃p/ h̃nÞ1 of the scaled sur-
face fieldsssee Sec. II Bd the zero line is shifted toward the
region of the surface field with the smaller absolute value.
Furthermore the zero line is not straight, but tends to increas-
ing valuesuv0u for increasing distancew from the substrate.
However, the deviation of the zero line from the line

sv=0,wd decreases for −h̃p/ h̃n→1. For constant ratios

−h̃p/ h̃n the deviation of the zero line from the line
sv=0,wd decreases with increasing absolute values of the

scaled surface fieldsh̃p and h̃n. These results demonstrate
how the order parameter structure for the fixed point fields

uh̃pu , uh̃nu→` emerges smoothly from the general case of fi-
nite fields. In this sense in the following we focus on the case
of infinite surface fields, i.e., strong adsorption.

B. Single stripe

The second system we focus on consists of a laterally
extended substrate with a negative surface fieldh1→−` in
which a stripe of widthS with a positive surface field
h1→` is embeddedfsee Fig. 1sbdg. The surface fieldh1 is
assumed to vary in a steplike way:

h1sxd = H+ `, x P f0,Sg,

− `, x ¹ f0,Sg.
J s43d

We introduce the coordinatesv andw scaled in units of the
correlation length, wherev denotes the scaled distance from
the left border of the stripe atx=0 andw the scaled distance
from the substrate. The influence of the stripe widthSand of
the reduced temperaturet are captured by the scaled stripe

width S̃=S/j±. The order parameter profile for the system
with a single stripesSSd exhibits the scaling property

fsx,z,t,Sd = autubPSS
± Sv =

x

j± ,w =
z

j± ,S̃=
S

j±D s44d

with the limiting behavior

PSS
± sv,w,S̃= 0d = − P`

±swd, s45d

PSS
± sv,w,S̃→ `d = PCS

± sv,wd. s46d

Figures 8sad and 8sbd show cross sectionssparallel to the
substrated through the order parameter scaling function

PSS
+ sv ,w,S̃d for systems with different scaled stripe widthS̃

at two different scaled distancesw from the substrate in com-
parison with a cross section through the order parameter pro-
file PCS

+ sv ,wd at a single chemical step atv=0 ssee Sec.

III A d. With increasing scaled widthS̃→` of the stripe the
left part of the cross section of the stripe system merges with
the cross section of the system with a single step. Further
away from the substrate the mutual influence of the two step

FIG. 7. The shaded area indicates the contribution to the excess

adsorptionG̃ex,CS
± as defined in Eq.s37d for w=w* =6.0 for a system

aboveTc and with a chemical step.G̃ex,CS
± is obtained by summing

these shaded areas overw.
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structures onto each other is more pronouncedfsee Fig. 8sbdg
and stronger for smaller stripes.

For systems with a single chemical stripe on the substrate

a reference system with the scaling functionPSS,0
+ sv ,w,S̃d

can be introduced, similar to the one for a single chemical
step, which can be interpreted as a system with a single
chemical stripe on the substrate where no healing occurs:

PSS,0
+ sv,w,S̃d =H+ P`

+swd, v P f0,S̃g,

− P`
+swd, v ¹ f0,S̃g.

J s47d

This reference system allows us to define the excess adsorp-

tion G̃ex,SS
+ for the striped systems:

G̃ex,SS
+ sS̃d =E

−`

`

dvE
0

`

dwfPSS
+ sv,w,S̃d − PSS,0

+ sv,w,S̃dg.

s48d

Equations48d can be rewritten as

G̃ex,SS
+ sS̃d = lim

B̃→`
HE

−sB̃−S̃d/2

sB̃+S̃d/2
dvE

0

`

dwfPSS
+ sv,w,S̃dg

+ sB̃ − 2S̃dG̃`
+J , s49d

whereB=B̃j@S is the overall lateral extension of the sub-
strate surface in thex direction fsee Fig. 1sbdg and

G̃`
+ =e0

`dw P̀+swd is a universal number characterizing the
amplitude of the excess adsorption at ahomogenoussub-

strate:e0
`dzfsz,td=G̃`

+aj0
+tb−n. The value ofG̃`

+ is discussed
in Ref. f33g and in Ref. f25g where it is denoted as

G̃`
+ =g+/ sn−bd fsee Eq.s2.9d and Fig. 5 in Ref.f25g; in

d=3 one hasG̃`
+ =2.27g. Equations49d describes how in an

operational sense the universal functionG̃ex,SS
+ sS̃d ssee Fig. 9d

can be obtained from the measurements of the excess adsorp-
tion srelative to the bulk order parameterd at a striped surface
and from those of the excess adsorption at the corresponding
homogeneous surface.

Figure 9 shows the dependence of the excess adsorption

G̃ex,SS
+ on the scaled stripe widthS̃. For S̃→` the structures

associated with the two chemical steps forming the stripe

decouple so that G̃ex,SSsS̃→`d=0. Upon construction

G̃ex,SSsS̃=0d=0. The decrease of the excess adsorption at

S̃<1 arises due to the fact that for sufficiently small stripes
the spatial region where the order parameter profile is posi-
tive no longer resembles a rectangular but a tonguelike shape
ssee Fig. 10d. Since for the reference system the region with
a positive order parameter still resembles a rectangle this
leads to a negative excess adsorption.

For different stripe widthS̃ the tonguelike regions defined
by the zero linesv0swd where the order parameter vanishes,

FIG. 8. Comparison between the normalized cross sections of
the order parameter scaling function near a substrate with negative
surface field in which a stripe with positive surface field of scaled

width S̃ is embedded and the normalized cross sections of the order
parameter profile near a single chemical stepswhich emerges as

limiting case forS̃→`d, sad at a scaled normal distancew=2.7, and
sbd at w=13.5. Here we consider the caseT.Tc. The chemical

steps are located atx=0 andx=S corresponding tov=0 andv=S̃
ssee vertical linesd.

FIG. 9. Universal excess adsorptionG̃ex,SS
+ fEq. s48dg for a single

stripe with respect to a system with no healing as a function of the

stripe widthS̃. For S̃=0 the system corresponds to a system with a
homogeneous substrate whose corresponding excess adsorption is

0. In the limit S̃→` the stripe system corresponds to two indepen-
dent chemical steps whose excess adsorption also vanishes due to

antisymmetry of the profiles aroundv=0 andv=S̃→`. The non-

vanishing excess adsorption for intermediate stripe widthsS̃ indi-
cates the effect of the stripe with a surface field opposite to the one

of the embedding substrate.G̃ex,SS
+ attains its minimum atS̃.0.3.
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Psv0,wd=0, are shown in Fig. 10. The width of the tongue at

the substrate is given by the stripe widthS̃ due to the infi-

nitely strong surface fields. With increasing stripe widthS̃
the tongue becomes longer. Figure 11 shows the dependence

of the lengthw0,max of the tongue on the stripe widthS̃. It

shows that for small stripesw0,max increases linearly withS̃.

C. Periodic stripes

As a natural extension we now consider a substrate with a
periodic array of stripes with alternating surface fieldsfsee
Fig. 1scdg: stripes of widthSpsSnd with positive snegatived
surface fieldh1→`sh1→−`d. In the lateralx direction we
employ periodic boundary conditions. The corresponding
scaling functionPPS for the order parameter distribution near
the substrate with periodic stripessPSd depends on two
scaled coordinatesv=x/j+ and w=z/j+ and on two scaled

stripe widthsS̃p=Sp/j+ and S̃n=Sn/j+ or, equivalently,S̃p

and S̃n/ S̃p=Sn/Sp. Thus in the seriesP`, PCS, PSS, andPPS
each scaling function acquires one additional scaling vari-

able. Considering the excess adsorptionG̃ex,PS
+ sS̃p,S̃n/ S̃pd re-

duces the number of scaling variables to two:

G̃ex,PS
+ sS̃p,S̃n/S̃pd = NE

0

S̃p+S̃n
dvE

0

`

dwfPPS
+ sv,w,S̃p,S̃n/S̃pd

− PPS,0
+ sv,w,S̃p,S̃n/S̃pdg, s50d

where PPS,0
+ =P`

+swd on the positive stripe and
PPS,0

+ =−P`
+swd on the negative stripe.N is the number of

periodic cells on the substrate. In analogy to Eq.s49d one has

G̃ex,PS
+ sS̃p,S̃n/S̃pd = NHE

0

S̃p+S̃n
dvE

0

`

dwfPPS
+ sv,w,S̃p,S̃n/S̃pdg

− sS̃p − S̃ndG̃`
+J . s51d

As compared with the case of a single stripe the periodic
arrangement enhances the excess adsorption by thespoten-
tially larged number of lateral repeat units. Figure 12sad
shows thatG̃ex,PS

+ _0 for Sp_Sn. G̃ex,PS
+ vanishes atSn=0

because this corresponds to the limiting case of a homoge-

neous substrate.G̃ex,PS
+ also vanishes forSn=Sp for symmetry

FIG. 10. Zero linesv0swd where the order parameter vanishes,

Psv0,wd=0, for different stripe widthsS̃. Outside the tongue the
order parameter is negative, corresponding to the preference for the
substrate outside the stripe. Inside the tongue the order parameter is
positive and thus demarcates the range of influence of the stripe
with opposite preference.

FIG. 11. Dependence of the lengthw0,max of the tongues shown

in Fig. 10 on the stripe widthS̃. For small stripe widths the length

of the tongue increases linearly; with increasing stripe widthsS̃ the
lengthw0,max of the tongues diverges.

FIG. 12. sad Universal scaling function for the excess adsorption

G̃ex,PS
+ per unit cellfEqs.s50d ands51dg for a system with a periodic

stripe pattern of negative and positive surface fields with scaled

widths S̃n=Sn/j andS̃p=Sp/j, respectively. The caseS̃n/ S̃p=0 cor-
responds to a homogeneous substrate with a positive surface field.

The excess adsorption vanishes forS̃n=S̃p due to symmetry reasons.

For large ratiosS̃n/ S̃p with S̃p fixed the excess adsorptionG̃ex,PS
+ /N

tends to the excess adsorption of a single stripe of widthS̃p that is

given by Fig. 9.sbd Loci of the maxima ofG̃ex,PS
+ sS̃p,S̃n/ S̃pd /N.
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reasons. The limitS̃n/ S̃p→` with S̃p fixed leads to the case
of a single stripe of widthSp; this corresponds to Fig. 9 up to
the factorN. In Fig. 12sbd the loci of the maxima of the

excess adsorptionG̃ex,PS
+ /N for different stripe widthsS̃p and

S̃n are given.

The positive values of the excess adsorptionG̃ex,PS
+ are

again caused by the tonguelike regions within which the or-

der parameter profile has a definite sign. ForS̃p, S̃n there is
a finite tonguelike region adjacent to each positive stripe
within which the order parameter is positive, and it is nega-

tive outside of it. ForS̃p→ S̃n the tongue length diverges and
the tongue boundaries degenerate into two parallel lines or-

thogonal to the substrate. ForS̃p. S̃n there are tongues of
negative values of the order parameter adjacent to the nega-
tive stripes. Figure 13 shows the lengthw0,maxof the tongues

on the stripe widthS̃n for different ratiosS̃n/ S̃p. With increas-

ing ratio S̃n/ S̃p→` the limit of a substrate with a single

positive stripe of widthS̃p in a negative matrix is reached.

IV. SUMMARY

Based on mean field theory combined with renormaliza-
tion group arguments we have studied critical adsorption of
fluids at chemically structured substrates. The fluids are ei-
ther one- or two-component liquids near their gas-liquid
critical point or binary liquid mixtures near their critical de-
mixing point. In the first case the order parameter is given by
the local total density, in the second case by the local con-
centration. We have determined the order parameter profiles
and suitably defined excess adsorptions for three substrate
types: a single chemical step, a single chemical stripe, and a
periodic stripe patternssee Fig. 1d. We have obtained the
following main results.

s1d The order parameter profiles and the excess adsorp-
tion can be described in terms of universal scaling functions
fEqs.s24d, s35d, s39d–s41d, s44d, s49d, ands51dg. The excess

adsorptions are introduced relative to order parameter pro-
files at homogeneous substratessSec. II and Fig. 2d taken to
vary in a steplike way in the lateral direction according to the
actual chemical pattern under consideration.

s2d The specific shapes of the scaling functions are deter-
mined within mean field theory. For thechemical stepthe
full scaling function of the order parameter profiles is shown
in Fig. 3 in terms of the scaling variablesv=x/j and
w=z/j given by the lateralsxd and the normalszd coordi-
nates in units of the bulk correlation lengthj. Lateral cuts
through the normalized scaling function with an emphasis on
its asymptotic behavior far from the substrate are shown in
Fig. 4. For the case of strong adsorption considered here the
slopes of the scaling function across the chemical step in-
crease,w−2 upon approaching the surface and decay,e−Cw

toward the bulk withC=1 aboveTc and C,1 below Tc
sFig. 5d. To a large extent the variation of the full scaling
function normal to the surface can be absorbed by rescaling
the lateral variation suitablysFig. 6d. The excess adsorption
at the chemical stepfEq. s37d and Fig. 7g leads to universal
numbers abovefEq. s40dg and belowTc fEqs.s39d ands41dg.

s3d The lateral variation of the order parameter adjacent
to a single chemical stripeis shown in Fig. 8 in terms of its
suitably normalized scaling function. Figure 8 visualizes the
dependence of these structures on the scaled stripe width.
Figure 10 illustrates the influence of a chemical stripe of
width S on the adjacent order parameter. The range of this
influence, defined as the spatial region of maintaining the
preferred sign of the order parameter, generates tonguelike
structures which grow with increasing stripe widthsFig. 11d.
The excess adsorptionfEq. s49dg is described by a universal

scaling function in terms ofS̃=S/j, which is minimal for

S̃.0.3 sFig. 9d.
s4d For aperiodic stripe patternof N unit cells the scal-

ing function for the order parameter depends on four scaling

variables:v, w, S̃p=Sp/j, andS̃n=Sn/j whereSp andSn are
the widths of the stripes with positive and negative surface
fields, respectively. The range of influencessee point 3
aboved of the narrower stripes is again confined to tonguelike
structures which grow with increasing stripe widthsFig. 13d.
The corresponding excess adsorptionfFig. 12sadg is given by

a universal scaling function in terms ofS̃p and S̃n, which
describes the interpolation between the homogeneous

substrate sS̃n/ S̃p=0d and a single stripe of widthS̃p

sS̃n/ S̃p=` , S̃p fixedd. The relation betweenS̃p and S̃n that
yields the maximum excess adsorption is shown in Fig.
12sbd.

APPENDIX: NUMERICAL METHODS

In the following, we provide some details of the numeri-
cal methods we have applied. The order parameter profiles
are be calculated numerically from Eqs.s13d–s15d by intro-
ducing a discrete lattice with finite spatial extensions. The
extension of the system perpendicular to the substratesz di-
rectiond is L; the extension in the direction of the inhomoge-
neity of the substratesx directiond is B. The corresponding
lattice spacings are denoted asdzanddx. Since the system is

FIG. 13. Dependence of the rescaled lengthw0,max of the
tongues within which the order parameter adjacent to a stripe main-
tains the sign preference of the stripescompare Fig. 10d on the

stripe widthS̃n for different ratiosS̃n/ S̃p. The limit S̃n/ S̃p→` cor-

responds to the case of a single stripe of widthS̃p. The full curve
corresponds to the latter casessee also Fig. 11d and is denoted
as` :1.
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translationally invariant in thed−2 directions perpendicular
to thex-z planeswhered denotes the spatial dimension of the
systemd, the numerical problem is effectively two dimen-
sional.

For the calculation of the scaling functions these quanti-
ties are scaled with the correlation lengthj± leading to the
scaled lengthL̃ in the w direction, the scaled widthB̃ in the
v direction, and the corresponding lattice spacingsdw and
dv, respectively. In order to mimic the characteristics of an
infinitely extended system we choose an exponentially de-
caying continuation of the order parameter profiles as the
boundary condition at the distanceL from the substrate.sFor
the nonantisymmetric profiles we resort to a constant con-
tinuation.d In the case of the substrate with a single chemical
step or a single stripe we choose the widthB̃ such that the
system is sufficiently broad that the influence of the chemical
steps at the lateral boundaries is negligible and the order
parameter attains the value of the corresponding half-space
profile P`

±swd for infinite surface fieldsh̃1→` or Ph1

± swd
for finite surface fieldsh̃1,` :PCS

± s±B̃/2 ,wd= ±P`,h1

± swd ,

PSS
± s±B̃/2 ,wd=−P`,h1

± swd. For the substrate with periodic
stripes one can focus on a single unit cell so that the scaled
width B̃ is the sum of the stripe widthsS̃p and S̃n with peri-

odic boundary conditions:PPS
± s+B̃/2 ,wd=PPS

± s−B̃/2 ,wd. The

choices for the widthB̃ and the lengthL̃ of the system are

not completely independent, i.e., for a given lengthL̃ there is

a minimum widthB̃ so thatL̃ and B̃ span a region in which
the order parameter profile is calculated correctly under the
chosen boundary conditions. It turns out that a width

B̃*16 is sufficient for the studied range of lengthsL̃&20.

For the substrates with a single stripe the widthB̃−S̃ of the

negative matrix is chosen asB̃−S̃*16 and is kept constant
for different widths of the stripe. We use the steepest descent
method in order to calculate the order parameter profiles. The
values of the scaling functionPsv ,wd of the order parameter
at each lattice point are split into an initial partPinsv ,wd fsee
the profiles for systems where no healing occurs given by
Eqs.s36d and s47dg, which is a known solution for a system
similar to the one under consideration, and a correction term
Pcorrsv ,wd, which is varied in accordance with the steepest
descent method. This procedure is described in detail in Ref.
f45g. The excess adsorption depends on the value of the lat-
tice spacingsdv anddw, respectively, used for its numerical
calculation. Therefore we have calculated the excess adsorp-
tion for different lattice constants and extrapolated it to
dv=dw=0. It also depends on the length of the system.
Hence we calculated the order parameter profiles for a fixed

width B̃ and different lengthsL̃. For lengths larger thanL̃
=10 the results are indistinguishable, i.e., for these lengths
corrections with respect to an infinitely long system are
negligible.
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